SP5000 интеллектуальная облачная платформа интернета вещей "IoT SP5000 "Элемент"

Инструкция по установке и настройке

Екатеринбург 2018

Все права защищены.

Технические данные и спецификации являются обязательными только в том случае, если они отдельно согласованы в договоре в письменной форме. Сохраняется право на внесение технических изменений.

Оглавление

1.	Одо	кументе	4
2.	Поді	готовка к развертыванию платформы ІАРЕ	4
	2.1.	Инсталляция ansible-машины	4
	2.2.	Создание виртуальных машин для IAPE в OpenStack	5
	2.3.	Конфигурация OpenStack для развёртывания IAPE	9
	2.4.	Конфигурация ansible для развёртывания IAPE	13
3.	Про	цедура развертывания платформы IAPE	26
	3.1.	Варианты развертывания платформы ІАРЕ	26
	Вари	ант развертывания 1 (с кластером узлов)	26
	Вари	ант развертывания 2 (с одиночными узлами)	27
	3.2.	Команды для развертывания платформы ІАРЕ	28
	3.3.	Проверка работы компонентов платформы ІАРЕ	30
	3.3.1	. FreeIPA	30
	3.3.2	. Keycloak	31
	3.3.3	. Cassandra	32
	3.3.4	. Стек ELK	32
	3.3.5	. Компоненты ServiceMix	33
	3.3.6	. Каfka и Zookeeper в архитектуре с одиночными узлами	34
	3.3.7	. Модули мониторинга	35
	3.3.8	. Узел Spark	37
	3.3.9	. Интерфейс пользования IAPE GUI	38
	3.3.1	0. HAProxy, Keepalived и HTTPD	39
	3.3.1	1. Шлюз АРІ GW	40
	3.3.1	2. Веб-интерфейс репозитория СІМгеро	41
	3.3.1	3. Узлы в кластере Mariadb-Galera	43
	3.3.1	4. Интерфейс шлюза SDP	44

1. О документе

Документ описывает процесс автоматизированной инсталляции платформы.

2. Подготовка к развертыванию платформы ІАРЕ

2.1. Инсталляция ansible-машины

Табл. 2.1. Технические требования для ansible-машины

OC	Ядер ЦП	ОЗУ (ГБ)	Жесткий диск (ГБ)
Centos - 1611	1	2	40

Подготовка OpenStack к инсталляции ansible-машины:

- Создать проект ("tenant") и пользователя ("user") с соответствующими административными правами;
- Создать внутреннюю сеть ("network") с параметром Общая = Да;
- Создать маршрутизатор ("router");
- Создать тип инстанса ("flavor") с параметрами, указанными в требованиях для ansible-машины;
- Создать группу безопасности ("security group") и добавить в нее правила для протоколов TCP/UDP/ICMP/112 (все порты должны быть открыты);
- Импортировать ключевую пару ("key pair") с именем *"ansible"*, используя публичный ключ ssh для ansible-машины:

```
"ssh-rsa
```

AAAAB3NzaC1yc2EAAAADAQABAAABAQC73kPKmhUAJUo5wO96pRb40TAFpIHBgK6XAdPF ALyHPSQ0eqHjBOiybinGuxHOo+hFuFnFUzfsdaVonuTFKI+PuyZLLDAC8eVxp1ZDc+uRl6okqyp SiyIWH0ect5UiXXh1f0qB0Ch0ticEnK9ThIR48zUSIAgQ0DVZ6WaZQG10z2Se21bSDWZfbz19M/kA GSV6Z18GTUUQwhLHxS/QkOukjkpX0n69CtMWpKiuBNhL1QtmdmFQfOOmd3u6urz49quMaWO 0o9iMxjf5hbA0hKrIUV5v+DMiOSi0TjSW8X76FbEQ3M5RZ3VGJI0cTtw48ZZGO+AIqXoryyEhyHR udTFt Generated-by-Nova"

Инсталляция ansible-машины в OpenStack:

- 1. Скопировать ansible-образ для IAPE на контрольную ноду OpenStack (например, при помощи WinSCP).
- 2. Скачать файл "OpenStack RC-файл версии 3" из графического интерфейса OpenStack. и скопировать его на контрольную ноду OpenStack (например, при помощи WinSCP).
- 3. Подключиться по ssh к контрольной ноде OpenStack (например, при помощи Putty) с логином/паролем = root/fai и выполнить команду "source <RC-file name>.sh"
- Импортировать ansible-образ с помощью команды:
 "openstack image create --disk-format raw --container-format bare --public --file <image-file name>.raw ansible"
- 5. Создать и запустить ansible-машину в OpenStack на основе импортированного образа и ранее заданных параметров. Подключиться по ssh к созданной ansible-машине (например, при помощи Putty) с логином/паролем = **root/iskratel**

6. Выполнить конфигурацию модуля shade для работы ansible-машины с OpenStack путём параметров, созданных в OpenStack paнee.

изменения конфигурационного файла "~/.config/openstack/clouds.yml" под значения

clouds: #Name of tenant mpt-prod: auth: #Username and password for login to tenant username: mpt-user password: iskratel **#Name of tenant** project_name: mpt-prod project_domain_name: Default user domain name: Default #Auth url from openstack keystone auth_url: http://iotstack.iskrauraltel.ru:5000/v3

2.2. Создание виртуальных машин для IAPE в OpenStack

1. Выполнить конфигурацию ansible роли "create_cluster_OSinstance" путём внесения в файл: "/etc/ansible/role/create_cluster_OSinstance/defaults/main.yml" (в варианте с кластером узлов) или "/etc/ansible/role/create_single_OSinstance/vars/main.yml" (в варианте с одиночными узлами) значений, соответствующих созданным в OpenStack параметрам.

Create network and router
create_nework_component: false
Create network (Internal)
SHARED_NETWORK: iape_internal_net
network_subnet : 172.16.37.0/24
network_gateway : 172.16.37.1
network_dns : 8.8.8.8
Name from router
router_name : iape_router
#Don't change name of external_net if dont change of openstack environment
name_external_net: public_floating_net
#######################################
attach_key: false
PUBLIC_KEY: ssh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQC73kPKmhUAJUo5wO96pRb40TAFpIHBgK6XAdPFA LyHPSQ0eqHjBOiybinGuxHOo+hFuFnFUzfsdaVonuTFKI+PuyZLLDAC8eVxp1ZDc+uRl6okqypSiy IWH0ect5UiXXh1f0qB0Ch0ticEnK9ThIR48zU\$ #Instance auth key **KEY NAME: ansible** # Attach new image on openstack attach_image: true # Name of image, attach on openstack or to create instance from this images. OSIMG: centos7-iape #Image Format who need to upload on openstack end attach (ex. raw,gcow2c) img_format: qcow2 #Name of security group security_group: iape_security_group # Create volume storage create_volume: true openstack_availability_zone: nova openstack_volume_device: /dev/vdb type: volumes ceph image_preffix: /opt/SI5000/qcow export_inventory_file: "/tmp/ansible-hosts.cfg" vm_parametar: - { name: cassandra01, cpu: 3, ram: 8192, disk: 50, volumes: 100 } - { name: cassandra02, cpu: 3, ram: 8192, disk: 50, volumes: 100 } - { name: cassandra03, cpu: 3, ram: 8192, disk: 50, volumes: 100 } - { name: zookeeper01, cpu: 2, ram: 3072, disk: 10, volumes: 50 } - { name: zookeeper02, cpu: 2, ram: 3072, disk: 10, volumes: 50 } - { name: zookeeper03, cpu: 2, ram: 3072, disk: 10, volumes: 50 } - { name: skz01, cpu: 8, ram: 20480, disk: 100, volumes: 100 } - { name: skz02, cpu: 8, ram: 20480, disk: 100, volumes: 100 } - { name: skz03, cpu: 8, ram: 20480, disk: 100, volumes: 100 } - { name: esb01, cpu: 3, ram: 6144, disk: 50, volumes: 10 } - { name: esb02, cpu: 3, ram: 6144, disk: 50, volumes: 10 } - { name: esb03, cpu: 3, ram: 6144, disk: 50, volumes: 10 } - { name: apigw01, cpu: 2, ram: 8192, disk: 10, volumes: 20 } - { name: apigw02, cpu: 2, ram: 8192, disk: 10, volumes: 20 } - { name: puzzle, cpu: 4, ram: 4096, disk: 30, volumes: 10 }

- { name: cimrepo, cpu: 4, ram: 8192, disk: 100, volumes: 10 }

vm_parametar1:

- { name: qminer, cpu: 3, ram: 8192, disk: 20 }
- { name: sdp-controller, cpu: 1, ram: 2048, disk: 8 }
- { name: sdp-gateway, cpu: 1, ram: 2048, disk: 8 }
- { name: keycloak, cpu: 2, ram: 8192, disk: 10 }
- { name: monitoring, cpu: 1, ram: 8192, disk: 20 }
- { name: freeipa-replica, cpu: 1, ram: 8192, disk: 8 }
- { name: dns, cpu: 1, ram: 2048, disk: 8 }
- { name: haproxy-master, cpu: 2, ram: 2048, disk: 8 }
- { name: haproxy-backup, cpu: 2, ram: 2048, disk: 8 }
- { name: iapegui, cpu: 1, ram: 8192, disk: 20 }
- { name: elkstack, cpu: 4, ram: 8192, disk: 50 }

или

Create network and router create_nework_component: false # Create network (Internal) SHARED_NETWORK: iape_internal_net network_subnet: 172.16.37.0/24 network gateway: 172.16.37.1 network_dns: 8.8.8.8 # Name from router router_name : iape_router #Don't change name of external_net if dont change of openstack environment name_external_net: public_floating_net attach key: false PUBLIC_KEY: ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC73kPKmhUAJUo5wO96pRb40TAFpIHBgK6XAdPFA LyHPSQ0eqHjBOiybinGuxHOo+hFuFnFUzfsdaVonuTFKI+PuyZLLDAC8eVxp1ZDc+uRl6okqypSiy IWH0ect5UiXXh1f0qB0Ch0ticEnK9ThIR48zU\$ #Instance auth key **KEY_NAME:** ansible # Attach new image on openstack

attach_image: true # Name of image, attach on openstack or to create instance from this images. OSIMG: centos7-iape #Image Format who need to upload on openstack end attach (ex. raw,qcow2c) img_format: qcow2 #Name of security_group security_group: iape_security_group # Create volume storage create volume: true openstack_availability_zone: nova openstack volume device: /dev/vdb type: volumes_ceph image_preffix: /opt/SI5000/qcow export_inventory_file: "/tmp/ansible-hosts.cfg" vm_parametar: - { name: cassandra, ram: 8192, cpu: 3, disk: 10, volumes: 20 } - { name: spark, cpu: 3, ram: 8192, disk: 10, volumes: 10 } - { name: zookeeper-kafka, cpu: 2, ram: 3072, disk: 10, volumes: 10 } - { name: esb, cpu: 3, ram: 6144, disk: 10, volumes: 10 } - { name: apigw, cpu: 2, ram: 8192, disk: 10, volumes: 20 } - { name: puzzle, cpu: 4, ram: 4096, disk: 30, volumes: 10 } - { name: qminer, cpu: 3, ram: 8192, disk: 20, volumes: 0 } - { name: sdp-controller, cpu: 1, ram: 2048, disk: 8, volumes: 0 } - { name: sdp-gateway, cpu: 1, ram: 2048, disk: 8, volumes: 0 } - { name: keycloak, cpu: 2, ram: 8192, disk: 10, volumes: 0 } - { name: monitoring, cpu: 1, ram: 8192, disk: 20, volumes: 0 } - { name: dns, cpu: 1, ram: 2048, disk: 8, volumes: 0 } - { name: iapegui, cpu: 1, ram: 8192, disk: 20, volumes: 0 } - { name: cimrepo, cpu: 4, ram: 8192, disk: 100, volumes: 10 }

^{2.} Из директории "/etc/ansible" запустить ansible-плэйбук для развёртывания виртуальных машин IAPE при помощи команды:

⁻ в варианте с кластером узлов - "*ansible-playbook createClusterOS.yml*". После успешного выполнения этого плэйбука в OpenStack должны появиться 27 новых виртуальных машин. - в варианте с одиночными узлами - "*ansible-playbook createSingleOS.yml*". После успешного выполнения этого плэйбука в OpenStack должны появиться 14 новых виртуальных машин.

3. Выполнить конфигурацию ansible-роли *"iape.freeipa.import"* путём внесения в файл *"/etc/ansible/role/iape.freeipa.import/defaults/main.yml*" значений, которые соответствуют созданным в OpenStack параметрам.

_	_	_

Create network and router #Name from Tenant cloud_name: mpt-prod create_nework_component: false # Create internal network (set name and subnet) SHARED_NETWORK: iape_internal_net network_subnet : 172.16.37.0/24 network_gateway: 72.16.37.1 network_dns: 8.8.8.8 router_name : iape_router name external net: public floating net **#Create FLAVOR** name_flavor: freeipa vram: 8192 vcpu: 1 vhdd: 20 # Create instance **INSTNAME:** freeipa-master **KEY NAME:** ansible # Attach new image on openstack attach_image: true image_prefix: /opt/SI5000/qcow # Name of image, attach on openstack or which need to attach OSIMG: freeipa-07122018 #float ip: 192.168.142.71 **#Securiy Group Name** secgr: freeipa_secgr

4. Из директории "/etc/ansible" запустить ansible-плэйбук для развёртывания виртуальной машины FreeIPA при помощи команды "ansible-playbook freeipa.yml". После успешного выполнения этого плэйбука в OpenStack должна появиться новая виртуальная машина с именем "freeipamaster".

2.3. Конфигурация OpenStack для развёртывания IAPE

Замечание: Для варианта развертывания с одиночными узлами выполнение описанных ниже пунктов 1. - 8. не требуется!

- 1. Скачать файл "OpenStack RC-файл версии 3" из графического интерфейса OpenStack и скопировать его на контрольную ноду OpenStack (например, при помощи WinSCP).
- 2. Подключиться по ssh к контрольной ноде OpenStack (например, при помощи Putty) с логином/паролем = **root/fai** и выполнить команду:

source <RC-file name>.sh

3. Создать VIP-порт, выполнив команду:

neutron port-create --name vip-port <internal_interface_name>

4. Вывести значения <vm_port_id>, выполнив команды::

neutron port-list | grep <internal_ip_from_haproxy1> | awk '{print \$2}'
neutron port-list | grep <internal_ip_from_haproxy2> | awk '{print \$2}'

5. Вывести значение <ip_vip_port>, выполнив команду::

neutron port-list --name vip-port | grep ip_address | awk -F "\"" '{print \$8}'

6. Присоединить VIP-порт к виртуальным машинам НА Proxy, выполнив команды:

neutron port-update <vm_port_id> --allowed-address-pairs type=dict list=true ip_address=<ip_vip_port> # neutron port-update <vm_port_id> --allowed-address-pairs type=dict list=true ip_address=<ip_vip_port>

7. Связать IP-адрес с VIP-портом, выполнив команды:

```
# neutron floatingip-create <floating_interface_name>
# neutron floatingip-associate <floating_id> <vip_id>
rдe:
- <floating_id> значение параметра id, полученное из вывода команды "neutron floating-create
..."
- <vip_id> значение параметра id, полученное из вывода команды "neutron port-create ..." на
шаге 3.
```

8. Отключить настройки безопасности для VIP-порта, выполнив команды:

neutron port-update <vip_id> --no-security-groups
neutron port-update <vip_id> --port-security-enabled=false
rдe: <vip_id> значение параметра id, полученное из вывода команды "neutron port-create ..."
на шаге 3.

- 9. Прописать IP-адрес сервера DNS в сетевых настройках графического интерфейса Openstack
 - В интерфейсе панели управления Openstack в разделе Networks выбрать внутреннюю сеть:

MIRANTIS OpenStack		mpt 🕶					≗ skopje1 •
Project ^	Ne	etwork	(S				
Compute ~					Filter	Q + Creat	te Network Relete Networks
Network ^		Name	Subnets Associated	Shared	Status	Admin State	Actions
Network Topology		its-net	its-net 192.168.5.0/24	No	Active	UP	Edit Network 👻
Networks	Displa	aying 1 item					
Routers							
Orchestration ~							
Object Store ~							
Admin ~							
Identity ~							
Murano ~							

Рис.1. Вкладка Network в графическом интерфейсе Openstack

MIRANTIS OpenStack		mpt 🕶				🛔 skopje1 🔻
Project ^	Ne	etwork	Details: its-net			
Compute ~						Edit Network 👻
Network ^	Net	work Ove	rview			
Network Topology	Name		its-net			
Networks	Proje	ct ID	3206a9b17cfd4fa0a10cf02d988b0764			
Routers	Admin	s n State	UP			
Orchestration ~	Extern	nal Network	No			
Object Store v	Provid	der Network	Network Type: vlan Physical Network: physnet2 Segmentation ID: 1027			
Admin ~			organismanist real			
Identity ~	Su	hnets			+ Create	Subnat
Murano ~	ou	IDITICIO			- Oreate	
		Name	Network Address	IP Version	Gateway IP	Actions
		its-net	192.168.5.0/24	IPv4	192.168.5.1	Edit Subnet 👻
	Displa	iying 1 item				
	Po	orts				

- Выбрать команду Edit Subnet для редактирования настроек подсети:

Рис. 2.Конфигурация подсети Openstack

- На вкладке Subnet details, в поле DNS name servers ввести IP-адрес сервера DNS и сохранить настройки:

Edit Subnet			×
Subnet * Subnet Details			
Enable DHCP	Specify	additional attributes for the subnet	
Allocation Pools 🕢			
192.168.5.2, 192.168.5.254			
INS Name Servers G	at		
192.168.5.45 8.8.8.8			
lost Routes O			
	al		
			3
ĸ	Back		Save

Рис. 3. Настройка IP-адреса сервера DNS

2.4. Конфигурация ansible для развёртывания IAPE

1. Изменить значения IP-адресов в файле "/*etc/ansible/hosts*" в соответствии с внешними IPадресами виртуальных машин, созданных в OpenStack. Для варианта с кластером узлов изменения необходимо делать в разделе [pipeline], а для варианта с одиночными узлами - в разделе [case2].

****** [ansible] <ansible_float_ip> ########## [pipline] <dns_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <ipa_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <cimrepo_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <puzzle_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <haproxy01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <haproxy02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <skz01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <skz02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <skz03_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <keycloak_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

<iapegui_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <sdpc_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <sdpg float ip> ansible ssh user=centos ansible ssh private key file=/etc/ansible/ansible.pem <apigw01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <apigw02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <monitoring_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <qminer float ip> ansible ssh user=centos ansible ssh private key file=/etc/ansible/ansible.pem <elk_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <cassandra01 float ip> ansible ssh user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <cassandra02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <cassandra03_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <esb01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <esb02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <esb03_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <zoo01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <zoo02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <zoo03_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[dns]

<dns_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[ipacli]

<ipa_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[cimrepo]

<cimrepo_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[puzzle]

<puzzle_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[haproxy2node]

<haproxy01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <haproxy02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem [haproxy-master] <haproxy01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem [haproxy-backup] <haproxy02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[skz-cluster]

<skz01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <skz02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <skz03_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[skz01]

<skz01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[skz02]

<skz02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[skz03]

<skz03_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[keycloak_case1] <keycloak_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[iapegui-case1] <iapegui_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[sdpc-case1] <sdpc_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[sdpg-case1] <sdpg_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem [api_gw-case1] <apigw01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <apigw02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[api_gw01] <apigw01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem [api_gw02] <apigw02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[monitoring-case1] <monitoring_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[EnergyForecast-case1] <qminer_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[elk-case1] <elk_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[cassandra-cluster]

<cassandra01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <cassandra02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <cassandra03_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[cassandra01] <cassandra01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[cassandra02] <cassandra02_float_ip> ansible_ssh_user=centos

```
ansible_ssh_private_key_file=/etc/ansible/ansible.pem
```

[cassandra03] <cassandra03_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[servicemix-cluster]

<esb01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <esb02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <esb03_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[servicemix01] <esb01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[servicemix02] <esb02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[servicemix03] <esb03_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[zoo-cluster]

<zoo01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <zoo02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem <zoo03_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[zoo1]

<zoo01_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[zoo2]

<zoo02_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

[zoo3]

<zoo03_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

#[case2]

#<dns_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem #<ipa_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem #<cassandra_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem #<spark_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem #<zo_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem #<esb_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem #<apigw_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem #<puzzle_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem #<qminer_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem #<sdpc float ip> ansible ssh user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem #<sdpg_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem #<keycloak_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem #<monitoring_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem #<iapegui float ip> ansible ssh user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem #<cimrepo_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

#[cimrepo]
#<cimrepo_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem

```
#[ipareplica]
```

#<ipaserv_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem
#<ipacli_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem

#[ipaserv]
#<ipaserv_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem

#[ipacli]
#<ipacli_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem

#[kafka]
#<kafka_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem

#[zookeeper]
#<zoo_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem

#[spark]
#<spark_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem

#[keycloak]
#<keycloak_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem

#[cassandra]
#<cassandra_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem

```
#[esb]
#<esb_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem
#[elk]
#<elk_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem
#[api_gw01]
#<apigw_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem
#[iapegui]
#<iapegui_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem
#[EnergyForecast]
#<qminer_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem
#[monitoring]
#<monitoring_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem
#[sdpc]
#<sdpc_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem
#[sdpg]
#<sdpg_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem
#[puzzle]
#<puzzle_float_ip> ansible_ssh_user=centos
ansible_ssh_private_key_file=/etc/ansible/ansible.pem
```

#[dns]

#<dns_float_ip> ansible_ssh_user=centos ansible_ssh_private_key_file=/etc/ansible/ansible.pem

 Выполнить конфигурацию ansible-роли "*iape.named.install*" путём внесения изменений в файл "/etc/ansible/role/*iape.named.instal/defaults/main.yml*". Необходимо указать последний октет IP-адреса внутренней сети и внешней сети для каждой виртуальной машины и для созданного в OpenStack VIP-порта. Например: *ipa: { type: A, last: <последние октет>, mac: }*)

mix_mirror : http://ansible.fuel.its.mak/repo
mix_download_timeout_seconds: 600
mix_install_parent_dir: /opt/SI5000
node_name : 'node_exporter'
node_tgz : '{{node_name}}.tar.gz'
node_tgz_url : '{{mix_mirror}}/{{node_tgz}}'
hostname: dns.iape.iskrauraltel.ru
defaults file for dns
#Domain name
domain: iape.iskrauraltel.ru
#Internal reverse domain
rev_domain: 37.16.172.in-addr.arpa
#Floating reverse domain
lioat_rev_domain: 56.168.192.in-addr.arpa
dne, subnet 172 16 27
#Electing subject for system
float dns subnet 192 168 56
#Dictionary of hosts
#Type sets the record type
#Last sets the last octet of the address.
#MAC is optional. The same dictionary can be used with the DHCP role.
#RECORD FOR INTERNAL NETWORK
records:
#FreeIPA
ipa: { type: A, last: 28, mac: }
#DNS node
dns: { type: A, last: "{{ ansible_default_ipv4.address.split('.')[3] }}" , mac: }
#FreeIPA client
cli: { type: A, last: 32, mac: }
#Keycloak
keycloak: { type: A, last: 29, mac: }
#monitoring + elkstack
prometheus. { type. A, last. 22, mat. }

#Puzzle node puzzle: { type: A, last: 24, mac: } **#API Gateway cluster** api-gw: { type: A, last: 19, mac: } api-gw-sec: { type: A, last: 6, mac: } **#SDP** controller sdp-controller: { type: A, last: 4, mac: } **#SDP Gateway** sdp-gateway: { type: A, last: 27, mac: } #Haproxy nodes haproxy1: { type: A, last: 31, mac: } haproxy2: { type: A, last: 20, mac: } **#VIP** port vip: { type: A, last: 3, mac: } ipa-ha: { type: A, last: 3, mac: } **#IAPE GUI node** ui: { type: A, last: 35, mac: } orin: { type: A, last: 35, mac: } analytics: { type: A, last: 35, mac: } #Cassandra cluster nodes cassandra01: { type: A, last: 8, mac: } cassandra02: { type: A, last: 14, mac: } cassandra03: { type: A, last: 9, mac: } **#SKZ cluster nodes** spark01: { type: A, last: 11, mac: } spark02: { type: A, last: 13, mac: } spark03: { type: A, last: 21, mac: } kafka01: { type: A, last: 11, mac: } kafka02: { type: A, last: 13, mac: } kafka03: { type: A, last: 21, mac: } # Zookeeper zookeeper01: { type: A, last: 10, mac: } zookeeper02: { type: A, last: 7, mac: } zookeeper03: { type: A, last: 5, mac: } #Apache Service MIX cluster nodes esb1: { type: A, last: 17, mac: } esb2: { type: A, last: 12, mac: } esb3: { type: A, last: 23, mac: } #Analytics node qminer01: { type: A, last: 16, mac: } #CimRepo node cimrepo: { type: A, last: 25, mac: } #Monitoring node monitoring: { type: A, last: 22, mac: } #Elkstack elkstack: { type: A, last: 38, mac: }

#RECORD FOR FLOATING NETWORK float_records:

#FreeIPA ipa: { type: A, last: 79, mac: } **#DNS node** # dns: { type: A, last: "{{ ansible_default_ipv4.address.split('.')[3] }}" , mac: } **#FreeIPA client** cli: { type: A, last: 76, mac: } #Keycloak keycloak: { type: A, last: 77, mac: } #monitoring + elkstack prometheus: { type: A, last: 57, mac: } **#Puzzle node** puzzle: { type: A, last: 71, mac: } **#API Gateway cluster** api-gw: { type: A, last: 55, mac: } api-gw-sec: { type: A, last: 96, mac: } #Haproxy for Api-GW and IAPE GUI (different from internal host) haproxyapi01: { type: A, last: 69, mac: } **#SDP** controller sdp-controller: { type: A, last: 58, mac: } **#SDP Gateway** sdp-gateway: { type: A, last: 89, mac: } #Haproxy nodes (different from internal host) haproxy01: { type: A, last: 91, mac: } haproxy02: { type: A, last: 63, mac: } **#VIP** port vip: { type: A, last: 139, mac: } ipa-ha: { type: A, last: 139, mac: } **#IAPE GUI node** ui: { type: A, last: 84, mac: } orin: { type: A, last: 84, mac: } analytics: { type: A, last: 84, mac: } #Cassandra cluster nodes cassandra01: { type: A, last: 88, mac: } cassandra02: { type: A, last: 81, mac: } cassandra03: { type: A, last: 60, mac: } **#SKZ cluster nodes** spark01: { type: A, last: 65, mac: } spark02: { type: A, last: 85, mac: } spark03: { type: A, last: 59, mac: } kafka01: { type: A, last: 65, mac: } kafka02: { type: A, last: 85, mac: } kafka03: { type: A, last: 59, mac: } # Zookeeper zookeeper01: { type: A, last: 66, mac: } zookeeper02: { type: A, last: 83, mac: } zookeeper03: { type: A, last: 97, mac: } #Apache Service MIX cluster nodes esb1: { type: A, last: 80, mac: } esb2: { type: A, last: 52, mac: } esb3: { type: A, last: 82, mac: } #Analytics node

qminer01: { type: A, last: 86, mac: }
#CimRepo node
cimrepo01: { type: A, last: 75, mac: }
#Monitoring node
monitoring: { type: A, last: 57, mac: }
#Elkstack
elkstack: { type: A, last: 62, mac: }
#DNS forwarders.
forwarders:
 - 1.1.1.1

- 8.8.8.8

3. Для варианта с кластером узлов добавить внутренний IP-адрес созданного в OpenStack VIPпорта в конфигурационные файлы "(oto/ansible/rolos/iano haproxy master install/defaults/main.yml"

"/etc/ansible/roles/iape.haproxy.master.install/defaults/main.yml", "/etc/ansible/roles/iape.haproxy.backup.install/defaults/main.yml" для ansible-ролей *"iape.haproxy.master.install"* и *"iape.haproxy.backup.install"*

--# defaults file for ansible-mariadb-galera-haproxy-keepalived
node_mirror : http://ansible.fuel.its.mak/repo
node_download_timeout_seconds: 600
node_install_parent_dir: /opt/SI5000
node_name : 'node_exporter'
node_tgz : '{{node_name}}.tar.gz'
node_tgz_url : '{{node_mirror}}/{{node_tgz}}'
vars file for ansible-haproxy-keepalived
ip address from vip port (dont work with hostname only with internal ip)
virtual_ip: 172.16.37.15
#internal ip address from haproxy 01 instance
haproxy01: haproxy1.iape.iskrauraltel.ru
#internal ip address from haproxy 02 instance
haproxy02: haproxy2.iape.iskrauraltel.ru

#ESB node internal ip esb01: esb1.iape.iskrauraltel.ru esb02: esb2.iape.iskrauraltel.ru esb03: esb3.iape.iskrauraltel.ru #nginx internal ip's nginx01: esb1.iape.iskrauraltel.ru nginx02: esb2.iape.iskrauraltel.ru nginx03: esb3.iape.iskrauraltel.ru #MariaDB server's mariadb01: cassandra01.iape.iskrauraltel.ru mariadb02: cassandra02.iape.iskrauraltel.ru mariadb03: cassandra03.iape.iskrauraltel.ru #Kafka node kafka01: kafka01.iape.iskrauraltel.ru kafka02: kafka02.iape.iskrauraltel.ru kafka03: kafka03.iape.iskrauraltel.ru **#Zookeeper nodes** zoo01: zookeeper01.iape.iskrauraltel.ru zoo02: zookeeper02.iape.iskrauraltel.ru zoo03: zookeeper03.iape.iskrauraltel.ru #Api-GW node apigw01: api-gw.iape.iskrauraltel.ru apigw02: api-gw-sec.iape.iskrauraltel.ru

- 4. Из директории "/etc/ansible" запустить ansible-плэйбук для развёртывания DNS при помощи команды "ansible-playbook dns.yml".
- 5. В графическом интерфейсе OpenStack выделить все инстансы, кроме DNS, и выполнить их горячую перезагрузку" ("soft reboot").

3. Процедура развертывания платформы ІАРЕ

3.1. Варианты развертывания платформы ІАРЕ

Вариант развертывания 1 (с кластером узлов)

Архитектура платформы ІАРЕ с кластером узлов представлена на рисунке ниже:

Рис. 2.5. Архитектура развертывания платформы с кластером узлов

Вариант развертывания 2 (с одиночными узлами)

Архитектура развертывания платформы ІАРЕ с одиночными узлами представлен на рисунке ниже:

Рис. 2.6. Архитектура развертывания платформы с одиночными узлами

3.2. Команды для развертывания платформы ІАРЕ

Команды для развертывания платформы IAPE целиком и ее отдельных компонентов приведены в таблицах ниже. Все они должны выполняться на ansible-машине из директории *"/etc/ansible"*.

Табл. 1. Команды для развертывания платформы ІАРЕ целиком

Инсталлируемые компоненты	Команда для развертывания
Все компоненты платформы IAPE для варианта архитектуры с кластером узлов	ansible-playbook pipline.yml
Все компоненты IAPE для варианта архитектуры с одиночными узлами	ansible-playbook case2.yml

Табл. 2. Команды для развертывания отдельных компонентов платформы ІАРЕ

Инсталлируемые компоненты	Команда для развертывания
Шлюз API GW (кластер узлов)	ansible-playbook api_gw.yml
Шлюз API GW (единый узел)	ansible- playbook iape.apigw01.install.yml
БД Cassandra single node (единый узел)	ansible-playbook cassandra.yml
БД Cassandra (кластер узлов)	ansible-playbook cassandra- cluster.yml
Репозиторий CIMRepo	ansible-playbook cimrepo.yml
Экземпляр Openstack c необходимыми настройками	ansible-playbook createOSinstance.yml
Eclipse версии MARS	ansible-playbook eclipse-mars.yml
Стек ELK (Elasticsearch, Logstash и Kibana)	ansible-playbook elkstack.yml
Модуль аналитики	ansible-playbook EnergyForecast.yml
ServiceMix (единый узел)	ansible-playbook esb.yml
FreeIPA (единый узел)	ansible-playbook freeipa.yml
Kafka+Zookeeper (единый узел)	ansible-playbook kafka.yml
Kafka (кластер узлов)	ansible-playbook kafkaCluster.yml
Keycloak	ansible-playbook keycloak.yml
Модуль мониторинга	ansible-playbook monitoring.yml
ServiceMix (кластер узлов)	ansible-playbook servicemixCluster.yml
Spark (единый узел)	ansible-playbook spark.yml
Spark (кластер узлов)	ansible-playbook spark-cluster.yml
Zookeeper (кластер узлов)	ansible-playbook zookeeperCluster.yml
Zeppelin	ansible-playbook zeppelin.yml
Контроллер SDP	ansible-playbook sdp-controller.yml
Шлюз SDP	ansible-playbook sdp-gateway.yml

FreeIPA (обновление версии)	ansible-playbook freeipa_upgrade.yml
Keycloak (обновление версии)	ansible-playbook keycloak_upgrade.yml
HAproxy и Keepalived (кластер узлов)	ansible-playbook haproxy2node.yml
Пользовательский интерфейс IAPE GUI	ansible-playbook iapegui.yml
Docker и QMiner	ansible- playbook iape.docker.qminer.yml
DNS-cepbep Bind	ansible-playbook dns.yml
SKZ (Spark, Skala, Kafka)	ansible- playbook iape.skz.cluster.install.yml
Реплика FreeIPA (клиент)	ansible-playbook ipacli.yml

3.3. Проверка работы компонентов платформы ІАРЕ

После завершения развертывания пакета ПО для IAPE, нужно проверить рабочее состояние всех сервисов согласно представленным ниже инструкциям. Все программное обеспечение будет установлено в директорию /opt/SI5000/, за исключением пакетов **FreeIPA**, **HAproxy**, **Keepalived**, сервера **HTTPD**, DNS-сервера **Bind** и **JAVA**, которое устанавливаются в директорию /etc.

3.3.1. FreeIPA

Чтобы проверить состояние сервиса IPA на главном сервере FreeIPA, используйте команду: service ipa status

[root@ipa ~]# ipactl status Directory Service: RUNNING krb5kdc Service: RUNNING httpd Service: RUNNING ipa-custodia Service: RUNNING ntpd Service: RUNNING pki-tomcatd Service: RUNNING ipa-otpd Service: RUNNING ipa: INFO: The ipactl command was successful

Рис. 2.7. Ответ от сервиса сервера FreeIPA

Веб-интерфейс FreeIPA доступен по адресу в формате: https://cepвep.gomen/ipa/ui/ (например, https://ipa.iape.iskrauraltel.ru/ipa/ui/)

freeIPA		
toelPA		
S toelPA		
S freePA	↓sername	• To login with username and password, enter them in the corresponding fields, then c Login.
tooPA Username Password	↓Isername Password or Password+One-Time-Password	 To login with username and password, enter them in the corresponding fields, then of Login. To login with Kerberos, please make sure you have valid tickets (obtainable via kinit) an configured the browser correctly, then dick Login.

Рис. 2.8. Главная страница веб-интерфейса сервера FreeIPA

Реквизиты доступа по умолчанию: admin/Freeipa1234!

3.3.2. Keycloak

Чтобы проверить состояние сервиса на узле Keycloak, используйте команду: service keycloak status

[centos@l-1 ~]\$ service keycloak status keycloak.service Redirecting to /bin/systemctl status keycloak.service b keycloak.service - Reycloak Service Loaded: loaded (/etc/systemd/system/keycloak.service; enabled; vendor preset: disabled) Active: active (running) since Mon 2018-02-12 13:28:16 UTC; lmin 51s ago Main PID: 12052 (standalone.sh) CGroup: /system.slice/keycloak/service __12052 /bin/sh /etc/keycloak/bin/standalone.sh -b 0.0.0.0 __12101 java -D[Standalone] -server -Xms6im -Xmx512m -XX:MetaspaceSize=96M -XX:MaxMetaspaceSize=256m -Djava.net.preferIPv4Stack=true -Djboss.moc... Feb 12 13:28:38 1-1 standalone.sh[12052]: 13:28:38,531 INFO [org.jboss.resteasy.resteasy_jaxrs.i18n] (ServerService Thread Pool -- 51) RESTEASY0...plication Feb 12 13:28:38 1-1 standalone.sh[12052]: 13:28:38,532 INFO [org.jboss.resteasy.resteasy_jaxrs.i18n] (ServerService Thread Pool -- 51) RESTEASY0...plication Feb 12 13:28:38 1-1 standalone.sh[12052]: 13:28:38,532 INFO [org.jboss.resteasy.resteasy_jaxrs.i18n] (ServerService Thread Pool -- 51) RESTEASY0...plication Feb 12 13:28:38 1-1 standalone.sh[12052]: 13:28:38,532 INFO [org.jboss.resteasy.resteasy_jaxrs.i18n] (ServerService Thread Pool -- 51) RESTEASY0...plication Feb 12 13:28:38 1-1 standalone.sh[12052]: 13:28:38,753 INFO [org.wildfly.extension.undertow] (ServerService Thread Pool -- 51) RESTEASY0...plication Feb 12 13:28:38 1-1 standalone.sh[12052]: 13:28:38,703 INFO [org.jboss.serveracesy_jaxrs.i18n] (ServerService Thread Pool -- 51) RESTEASY0...plication Feb 12 13:28:38 1-1 standalone.sh[12052]: 13:28:38,773 INFO [org.jboss.as.server] (ServerService Thread Pool -- 45) WELVSRV00010: Deployed "keycl...ver.war") Feb 12 13:28:38 1-1 standalone.sh[12052]: 13:28:38,779 INFO [org.jboss.as] (Controller Boot Thread) WELVSRV0060: Http management interface liste...anagement Feb 12 13:28:38 1-1 standalone.sh[12052]: 13:28:38,779 INFO [org.jboss.as] (Controller Boot Thread) WELVSRV0021: Reycloak 3.4.1.Final (WildFly C...n-demand) Hint: Some lines were ellipsized, use -1 to show in f

Рис. 2.9. Ответ от сервиса Keycloak

Или проверьте состояние через веб-интерфейс, доступный по адресам в формате: http://localhost:8080 или

https://hostname:8443/auth (например, https://keycloak.iape.iskrauraltel.ru:8443/auth) Реквизиты доступа по умолчанию: *admin/Keycloak1234!*

Примечание. Чтобы получить доступ к веб-интерфейсу, нужно импортировать сертификат FreeIPA в веб-браузер клиента.

Welcome to Keycloak

You need local access to create the initial admin user. Open http://localhost:8080/auth or use the add-user-keycloak script.

Documentation | Administration Console

Keycloak Project | Mailing List | Report an issue

JBoss | JBoss Community

Рис. 2.10. Главная страница Keycloak

3.3.3. Cassandra

Unofine the provide status and the provi

Рис. 2.11. Ответ от сервиса cassandra

3.3.4. Стек ELK

Чтобы проверить состояние сервисов стека ELK (Elasticsearch, Logstash и Kibana, используйте команды: service elasticsearch.service status

service filebeat.service status service kibana.service status service logstash.service status

Веб-интерфейс Kibana доступен по адресу в формате: http://hostname:5601 (например, http://elkstack.iape.iskrauraltel.ru:5601)

🖻 🖅 🚺 Kibana	× + ~			-	٥	×
\leftrightarrow \rightarrow \circlearrowright	(i) 192.168.142.76:5601/app/kibana	□ ☆	r∕≡	h	Ø	

Рис. 2.12. Главная страница веб-интерфейса Kibana

Реквизиты доступа не нужны, вход в веб-интерфейс Kibana будет выполнен автоматически.

3.3.5. Компоненты ServiceMix

Чтобы проверить работу сервиса ServiceMix Karaf, используйте команду:

```
systemctl status KARAF-service
```

[centos@1-1 ~]\$ systemctl status KARAF-service • KARAF-service.service - SYSV: Karaf Loaded: loaded (/etc/rc.d/init.d/KARAF-service; bad; vendor preset: disabled) Active: active (exited) since Tue 2018-02-13 07:32:19 UTC; lmin 38s ago Docs: man:systemd-sysv-generator(8) Feb 13 07:32:18 1-1 systemd[1]: Starting SYSV: Karaf... Feb 13 07:32:19 1-1 KARAF-service[12557]: Starting Karaf... Feb 13 07:32:19 1-1 systemd[1]: Started SYSV: Karaf.

Рис. 2.13. Ответ от сервиса ServiceMix Karaf

Если в работе сервиса обнаружены проблемы, перезапустите шину ESB с помощью команды: service KARAF-service start /etc/init.d/KARAF-service start

или через веб-интерфейс узла ESB, доступный по адресу в формате: http://hostname:8181/system/console (например, http://esb1.iape.iskrauraltel.ru:8181/system/console) или через VIP-порт (http://vip.iape.iskrauraltel.ru:8181/system/console/)

Main (DSGi Web Console				Log ou
Bundle i	nformation: 269 bundles in total - all 269 bundles active				
	× Apply Filter Filter All		Reload	Install/Updat	te Refresh Packages
Id	Name	Version	Category	Status	Actions
٥	» System Bundle (org.apache.felix.framework)	5.6.2		Active	
34	activeio-core (org.apache.activemq.activeio-core)	3.1.4		Active	\$ \$ \$
35	activemq-blueprint (org.apache.activemq.activemq-blueprint)	5.14.5		Fragment	¢ 🔿 🗃
86	activemq-camel (org.apache.activemq.activemq-camel)	5.14.5		Active	\$ # B
4	activemq-karaf (activemq-karaf)	5.14.5		Active	¢ 🕫 🝵
7	» activemq-osgi (org.apache.activemq.activemq-osgi)	5.14.5		Active	(¢) 🔿 🗉
18	activemq-web-console (org.apache.activemq.activemq-web-console)	5.14.5		Active	¢ 🕫 🗑
17	Apache Apache HttpClient OSGi bundle (org.apache.httpcomponents.httpclient)	4.5.1		Active	¢ 🕫 🝵
18	▶ Apache Apache HttpCore OSGi bundle (org.apache.httpcomponents.httpcore)	4.4.4		Active	\$ # B
9	Apache Aries Blueprint API (org.apache.aries.blueprint.api)	1.0.1		Active	\$ # E
0	Apache Aries Blueprint CM (org.apache.aries.blueprint.cm)	1.0.9		Active	\$ # B
1	Apache Aries Blueprint Core (org.apache.aries.blueprint.core)	1.7.1		Active	¢ 🕫 🝵
2	* Apache Aries Blueprint Core Compatibility Fragment Bundle (org.apache.aries.blueprint.core.compatibility)	1.0.0		Fragment	¢ ø 1
13	» Apache Aries JMX API (org.apache.aries.jmx.api)	1.1.5		Active	Ø 🕫 🗊
4	Apache Aries JMX Blueprint API (org.apache.aries.jmx.blueprint.api)	1.1.5		Active	\$ # B
5	▶ Apache Aries JMX Blueprint Core (org.apache.aries.jmx.blueprint.core)	1.1.5		Active	¢ 🕫 🝵

Рис. 2.14. Главная страница ServiceMix

Реквизиты доступа Karaf по умолчанию: karaf/karaf

Веб-интерфейс HAWTIO для ServiceMIX доступен по адресу в формате: http://hostname:8181/hawtio (например, http://esb1.iape.iskrauraltel.ru:8181/hawtio) или через VIP-порт (http://vip.iape.iskrauraltel.ru:8181/hawtio).

Рис. 2.15. Страница входа в HAWTIO

Реквизиты доступа HAWTIO по умолчанию: karaf/karaf

🌲 karaf 🍾	Ģ 0													hawtig
						IS	Thread	erminal	me Te	Gi Runti	ostics Jetty JMX Logs OSG	Diagnos	Dashboard	onnect
Manage	C													Monitor
a Non Heap	× Ja			Heap Memory	Java H	8			PU Load	System C	×		g System	Operatir
	*					. ^			<u>م</u> •	1.0	(Filter x)^			
									- en	0.9	▲ Value	^		Propert
	0/	41 0							Ereque	0.0 0	amd64			Arch
	112	Used (2							5- 5-	0.6	1		e processors	Availabl
				%	59.09				4 -	0.4	2841616384	mory size	ed virtual mer	Commit
		<u> </u>		24)	0622322				3 - 2 -	0.3	225251328	size	sical memory	Free ph
									I -	0.1	0		ip space size	Free sw
						.865	4	.86	863	0.0	4096	count	ile descriptor (Max
											Linux			Name
04:33 04	04:32	04:31	29 04:30	04:28 04:	04:27	04:26	04:25	04:24	04:23	04:22	java.lang:type=OperatingSystem		ame	Object i
								u time	hread cp	Current t	502	ount	e descriptor co	Open fi
								er time	thread us	Current	1		ss cpu load	III Proc
								t	ead count	Peak three	205750000000		ss cpu time	III Proc
									ount	Thread c	0		m cpu load	Jul Syste
								ad count	rted threa	Total sta			in openede	
04:33 04	04:32	04:31	29 04:30	04:28 04:	04:27	04:26	04:25	04:24	04:23	04:22	3.00		oau average	System
	5 1.52	2.001		- 1120 041	2		5	5 m_T	5	S HLL	1928933376	/ size	sical memory	Total ph

Рис. 2.16. Панель управления Hawtio

3.3.6. Kafka и Zookeeper в архитектуре с одиночными узлами

В случае развертывания варианта решения с одиночными узлами модули Kafka и Zookeeper должны быть установлены на одной и той же узле виртуальной машины. Поэтому плейбук для инсталляции Kafka дополнительно установит на узел еще и Zookeeper, а плейбук для инсталляции Zookeeper дополнительно установит на узел еще и Kafka.

Чтобы проверить состояние сервиса Kafka, используйте команду:

service kafka status

[cootBacks centcs]# service kafks status
Fedirecting to (shinystement)
Fedirecting to (shin

Feb :	13 16:03:54	kafka	kafka-server-start.sh[13277]:	[2018-02-13]	16:03:54,872] 1	INFO [G	Group Metadat.	s Manager	on Broker	0]: Rem	soved 0	expired (offsets in	1 0 milliseconds.	(kafka.coordinator.GroupMetadataManager)
Feb :	13 16:13:54	kafka	kafka-server-start.sh[13277]:	[2018-02-13]	16:13:54,873} 1	INFO [G	Group Metadat	Manager	on Broker	0]: Rem	soved 0	expired (offsets in	0 milliseconds.	(kafka.coordinator.GroupMetadataManager)
Feb :	13 16:23:54	kafka	kafka-server-start.sh[13277]:	[2018-02-13]	16:23:54,872] 1	INFO [G	Group Metadat	a Manager	on Broker	0]: Rem	soved 0	expired (offsets in	i O milliseconds.	(kafka.coordinator.GroupMetadataManager)
Feb :	13 16:33:54	kafka	kafka-server-start.sh[13277]:	[2018-02-13]	16:33:54,873]]	INFO [G	Group Metadat	a Manager	on Broker	0]: Rem	soved 0	expired a	offsets in	1 0 milliseconds.	(kafka.coordinator.GroupMetadataManager)
Feb :	13 16:43:54	kafka	kafka-server-start.sh[13277]:	[2018-02-13]	16:43:54,873]]	INFO [G	Group Metadat	a Manager	on Broker	0]: Rem	noved 0	expired (offsets is	i 0 milliseconds.	(kafka.coordinator.GroupMetadataManager)
Feb :	13 16:53:54	katka	kafka-server-start.sh[13277]:	[2018-02-13]	16:53:54,872] 1	INFO [G	Group Metadat	a Manager	on Broker	0]: Rem	soved 0	expired (offsets in	0 milliseconds.	(kafka.coordinator.GroupMetadataManager)
Feb .	13 17:03:54	kafka	kafka-server-start.sh[13277]:	[2018-02-13]	17:03:54,872]]	INFO [G	Group Metadat	Manager	on Broker	0]: Rem	soved 0	expired (offsets in	0 milliseconds.	(kafka.coordinator.GroupMetadataManager)
Feb .	13 17:13:54	kafka	kafka-server-start.sh[13277]:	[2018-02-13]	17:13:54,872] 1	INFO [G	Group Metadat	a Manager	on Broker	0]: Rem	coved 0	expired (offsets in	1 0 milliseconds.	(kafka.coordinator.GroupMetadataManager)
Feb .	13 17:23:54	kafka	kafka-server-start.sh[13277]:	[2018-02-13]	17:23:54,872] 1	INFO [G	Group Metadat	a Manager	on Broker	0]: Rem	moved 0	expired (offsets in	n 0 milliseconds.	(kafka.coordinator.GroupHetadataManager)

Рис. 2.17. Ответ от сервиса Kafka

Чтобы проверить состояние сервиса Zookeeper, используйте команду:

service zookeeper status

 zookeepei 	, service - Apache Zookeeper server
Loaded:	loaded (/etc/systemd/system/zookeeper.service; enabled; vendor preset: disabled)
Active:	active (running) since Tue 2018-02-13 09:23:33 UTC; 4min ls ago
Docs:	http://zookeeper.apache.org
Main PID:	23358 (java)
CGroup:	/system.slice/zookeeper.service
	L23358 java -Dzookeeper.log.dir=Dzookeeper.root.logger=INFO,CONSOLE -cp /etc/zookeeper/bin//build/classes:/etc/zookeeper/bin//build/lib

Feb 13 09:23:32 1-1 systemd[1]: Starting Apache Zookeeper server... Feb 13 09:23:32 1-1 zKserver.sh[23348]: ZooKeeper JXK enabled by default Feb 13 09:23:32 1-1 zKserver.sh[23348]: Using config: /etc/zookeeper/bin/../conf/zoo.cfg Feb 13 09:23:33 1-1 zKserver.sh[23348]: Starting zookeeper ... STARTED Feb 13 09:23:33 1-1 systemd[1]: Started Apache Zookeeper server.

Рис. 2.18. Ответ от сервиса Zookeeper

3.3.7. Модули мониторинга

Чтобы получить статус экспортера узлов, используйте команду: #systemctl status node_exporter.service

Чтобы получить статус jmx exporterd, используйте команду: #systemctl status jmx_exporterd

Чтобы получить статус сервиса prometheus, используйте команду: #systemctl status prometheus.service

Веб-интерфейс Prometheus доступен по адресу в формате: http://hostname:9090/graph (например, http://monitoring.iape.iskrauraltel.ru:9090/graph)

Prometheus Alerts Graph Status - H	elp
Expression (press Shift+Enter for newlines)	
Execute - insert metric at cursor -	
- insert metric at cursor - Graph C go_gc_duration_seconds	
go_gc_duration_seconds_count go_gc_duration_seconds_sum go_goroutines go_joinfo	Value
go_memstats_alloc_bytes go_memstats_alloc_bytes_total go_memstats_buck_hash_sys_bytes	Remove Graph
Add Graph go_memstats_frees_total go_memstats_gc_cpu_fraction go_memstats_csys_bytes go_memstats_heap_alloc_bytes go_memstats_heap_inuse_bytes	
go_memstats_heap_objects go_memstats_heap_released_bytes go_memstats_heap_released_bytes_tota go_memstats_heap_sys_bytes go_memstats_last_gc_time_seconds	al 🗸

Рис. 2.19. Главная страница Prometheus

Чтобы получить статус Grafana, используйте команду: #systemctl status grafana-server.service

Grafana	
Log in Sign up	
User email or username Password Log in	
Forgot your password?	
Docs Support Plans Community Grafana v4.3.1 (commit: befc15c) New version available!	

Рис. 2.20. Главная страница Grafana

Веб-интерфейс узла шлюза SDP доступен по адресу в формате: https://sdp-gateway.iape.iskrauraltel.ru/grafana/

Реквизиты доступа по умолчанию: admin/admin

i

Примечание. Перед запуском Grafana пропишите в таблицах файервола на шлюзе SPD IP-адрес клиента, который используется для запуска Grafana.

3.3.8. Узел Spark

Чтобы получить статус узла spark, используйте команду: # systemctl status spark.service [centos@l-1 spark-1.6.1]\$ service spark status Redirecting to /bin/systemctl status spark.service • spark.service - Spark Master node Loaded('tetc/systemcMystemcPapark.service; enabled; vendor preset: disabled) Active: active (running) since Tue 2018-02-13 12:11:12 UTC; 2min 58s ago Main PID: 2554 (java) CGroup: /system.since/spark.service L2554 /usr/java/jdkl.8.0_121/jre/bin/java -cp /etc/spark/conf/:/etc/spark/assembly/target/scala-2.10/spark-assembly-1.6.1-hadoop2.2.0.jar:/etc...

Feb 13 12:11:10 1-1 systemd[1]: Starting Spark Master node...
Feb 13 12:11:10 1-1 start-master.sh[2536]: starting org.apache.spark.deploy.master.Master, logging to /etc/spark/logs/spark-root-org.apache.spark...1-1-1.out
Feb 13 12:11:12 1-1 systemd[1]: Started Spark Master node.
Hint: Some lines were ellipsized, use -1 to show in full.

Рис. 2.21. Ответ от сервиса Spark

Веб-интерфейс главного узла доступен по адресу в формате: http://hostname:8080 (например: http://spark01.iape.iskrauraltel.ru:8080)

URL: spark://spark01:70	77						
REST URL: spark://spark	01:6066 (cluster mod	e)					
Alive Workers: 2							
Sores in use: 2 lotal, 0	Used						
Applications: 0 Running	D Total, 0.0 B Useu						
Drivers: 0 Running, 0 C	ompleted						
status: ALIVE	10						
Norkers			Address	State	Cores	Memory	
worker la							
worker-2018051607553	3-192.168.5.60-466	29	192.168.5.6	60:46629 ALIVE	1 (0 Used)	6.6 GB (0.0	0 B Used)
worker-2018051607553 worker-2018051608084	33-192.168.5.60-4662 12-192.168.5.63-3772	29 21	192.168.5.6 192.168.5.6	60:46629 ALIVE 33:37721 ALIVE	1 (0 Used) 1 (0 Used)	6.6 GB (0.0	0 B Used) 0 B Used)
worker-2018051607553 worker-2018051608084	33-192.168.5.60-466; 42-192.168.5.63-377; DNS	29 21	192.168.5.6 192.168.5.6	30:46629 ALIVE 33:37721 ALIVE	1 (0 Used) 1 (0 Used)	6.6 GB (0.0	D B Used) D B Used)
worker-2018051607553 worker-2018051608084 Running Application	33-192.168.5.60-4662 12-192.168.5.63-3772 DDS Name	29 21 Cores	192.168.5.6 192.168.5.6 Memory per Node	30:46629 ALIVE 33:37721 ALIVE	1 (0 Used) 1 (0 Used) User	6.6 GB (0.0 6.6 GB (0.0 State	0 B Used) 0 B Used) Duration
worker-2018051607553 worker-2018051608084 Running Applicatio Application ID	33-192.168.5.60-4663 12-192.168.5.63-3773 DDS Name	29 21 Cores	192.168.5.6 192.168.5.6 Memory per Node	30:46629 ALIVE 33:37721 ALIVE	1 (0 Used) 1 (0 Used) User	6.6 GB (0.0 6.6 GB (0.0 State	0 B Used) 0 B Used) Duration
worker-2018051607553 worker-2018051608084 Running Applicatio Application ID	193-192.168.5.60-4662 192-192.168.5.63-3772 DDDS Name Name	29 21 Cores	192.168.5.6 192.168.5.6 Memory per Node	30:46629 ALIVE 33:37721 ALIVE	1 (0 Used) 1 (0 Used) User	6.6 GB (0.0 6.6 GB (0.0 State	D B Used) D B Used) Duration

Рис. 2.22. Веб-интерфейс главного узла Spark

Веб-интерфейс подчиненного узла spark02 доступен по адресу: http://spark02.iape.iskrauraltel.ru:8081/

Веб-интерфейс подчиненного узла spark03 доступен по адресу: http://spark03.iape.iskrauraltel.ru:8081/

Spark 2.3.1 Spa	IN WOINEI at 172.1	0.00.01.33232	-	
D: worker-20181114062951 Master URL: spark://172.16 Cores: 5 (0 Used) Memory: 14.5 GB (0.0 B Us	-172.16.88.61-33232 .88.60:7077 ed)			
Back to Master				
Running Executors ())			

Рис. 2.23. Веб-интерфейс подчиненного узла Spark

Чтобы получить статус узла только сервисов SparkMeters на первом узле SKZ, используйте команды:

- # service gis-streamer.service status
- # service historic-streamer.service status
- # service prediction-streamer.service status

3.3.9. Интерфейс пользования IAPE GUI

Предварительные условия

Чтобы получить доступ к пользовательскому интерфейсу IAPE, нужно указать параметры веб-доступа к IAPE GUI в конфигурации Keycloak. Рекомендуется указать сетевое имя интерфейса, а не IP-адрес.

Примечание. Чтобы получить доступ к веб-интерфейсу, нужно импортировать сертификат FreeIPA в веб-браузер клиента.

Пользовательский веб-интерфейс доступен по адресу: https://sdp-gateway.iape.iskrauraltel.ru/orin

Рис. 2.24. Главная страница IAPE GUI

Реквизиты доступа по умолчанию: angular-root / Iskratel@1234

Веб-интерфейс Модуля аналитики доступен по адресу: https://sdp-gateway.iape.iskrauraltel.ru/analytics Реквизиты доступа по умолчанию: *angular-root / Iskratel*@1234

3.3.10. HAProxy, Keepalived и HTTPD

Чтобы проверить работу сервисов HAproxy, Keepalived и HTTPD, используйте команды:

- # service httpd status
- # service haproxy status
- # service keepalived status

[root@api-gw centos]# service haproxy status
Redirecting to /bin/systemcll status haproxy.service
haproxy.service - HAProxy Load Balancer
Loaded(!usr/lub/system/laystem/laystem/aproxy.service; disabled; vendor preset: disabled)
Active: active (running) since Tue 2018-02-13 13:48:20 UTC; l6s ago
Main PID: 5994 (haproxy-systemd)
CGroup: /system.slice/haproxy.service
-5994 /usr/sbin/haproxy-f/etc/haproxy/haproxy.cfg -p /run/haproxy.pid
-5994 /usr/sbin/haproxy -f /etc/haproxy.fg -p /run/haproxy.pid -Ds
-6010 /usr/sbin/haproxy -f /etc/haproxy.fg -p /run/haproxy.pid -Ds

Feb 13 13:48:20 api-gw.iape.iskrauraltel.ru systemd[]: Started HAProxy Load Balancer. Feb 13 13:48:20 api-gw.iape.iskrauraltel.ru systemd[]: Starting HAProxy Load Balancer... Feb 13 13:48:20 api-gw.iape.iskrauraltel.ru haproxy-systemd-wrapper[5994]: haproxy-systemd-wrapper: executing /usr/sbin/haproxy -f /etc/haproxy/hapr...id -Ds Hint: Some lines were <u>e</u>llipsized, use -1 to show in full.

Рис. 2.25. Ответ с данными о состоянии от сервиса Haproxy

[root@api-gw centos]# service keepalived status Redirecting to /bin/systemctl status keepalived.service
• keepalived.service - LVS and VRRP High Availability Monitor
Loaded: loaded (/usr/lib/systemd/system/keepalived.service; enabled; vendor preset: disabled)
Active: active (running) since Tue 2018-02-13 13:48:14 UTC; 1min 24s ago
Process: 5916 ExecStart=/usr/sbin/keepalived \$KEEPALIVED_OPTIONS (code=exited, status=0/SUCCESS)
Main FID: 5917 (keepalived)
CGroup: /system.slice/keepalived.service
-5917 /usr/sbin/keepalived -D
-5918 /usr/sbin/keepalived -D
└─5919 /usr/sbin/keepalived -D
Feb 13 13:48:14 api-gw.iape.iskrauraltel.ru Keepalived healthcheckers[5918]; Initializing ipvs 2.6
Feb 13 13:48:14 api-gw.iape.iskrauraltel.ru Keepalived healthcheckers[5918]: Netlink reflector reports IP 192.168.5.16 added
Feb 13 13:48:14 api-gw.iape.iskrauraltel.ru Keepalived_healthcheckers[5918]: Netlink reflector reports IP fe80::f816:3eff:feee:6a7f added
Feb 13 13:48:14 api-gw.iape.iskrauraltel.ru Keepalived_healthcheckers[5918]: Registering Kernel netlink reflector
Feb 13 13:48:14 api-gw.iape.iskrauraltel.ru Keepalived_healthcheckers[5918]: Registering Kernel netlink command channel
Feb 13 13:48:14 api-gw.iape.iskrauraltel.ru Keepalived_healthcheckers[5918]: Opening file '/etc/keepalived/keepalived.conf'.
Feb 13 13:48:14 api-gw.iape.iskrauraltel.ru Keepalived_healthcheckers[5918]: Configuration is using : 6103 Bytes
Feb 13 13:48:14 api-gw.iape.iskrauraltel.ru Keepalived_healthcheckers[5918]: Using LinkWatch kernel netlink reflector
Feb 13 13:48:31 api-gw.iape.iskrauraltel.ru Keepalived_healthcheckers[5918]: Netlink reflector reports IP 192.168.5.16 added
Feb 13 13:48:31 api-gw.iape.iskrauraltel.ru Keepalived vrrp[5919]: Netlink reflector reports IP 192.168.5.16 added

Рис. 2.26. Ответ с данными о состоянии от сервиса Keepaliveed

3.3.11. Шлюз АРІ GW

Чтобы проверить все сервисы шлюза API GW, используйте команды:

- # service gis-translator.service status
- # service mdma-translator.service status
- # service aggregation.service status
- # service expanded.service status
- # service graphql.service status
- # service measurements.service status
- # service snmp.service status
- # service eureka.service status
- # service real-time.service status
- # service compoiste-backend-ui.service status
- # service apigw.service status
- # service ifttt.service status
- # service gis-rest.service status
 "
- # service pred-rest.service status
- # service widget-rest.service status
- # service subscription-graphql.service status
- # service pki-app.service status

i

Примечание. Чтобы получить доступ к веб-интерфейсу, нужно импортировать сертификат FreeIPA в веб-браузер клиента.

Адрес api-gw01: https://api-gw.iape.iskrauraltel.ru:8787/api Адрес api-gw02: https://api-gw-sec.iape.iskrauraltel.ru:8787/api Реквизиты доступа по умолчанию: *angular-root / Iskratel*@1234

\varTheta swagger	https://192.168.82.159:8787/swagger-ui/dist/swagger.json	api_key		Explore	
API GW					
Some custom description of API.					
Created by Iskrauraltel Apache License Version 2.0.					
API-GW : API GW swagger		Show/Hide	List Operations	Expand Operations	
[base url: / , api version: API TOS]					

Рис. 2.27. Веб-интерфейс Swagger

Адрес Eureka01: http://api-gw.iape.iskrauraltel.ru:8761/ Адрес Eureka02: http://api-gw-sec.iape.iskrauraltel.ru:8761/

💋 spring Eurek	а			HOME LAST 1000 SINCE STARTUP
System Status				
Environment	test		Current time	2018-11-21T08:13:06 +0000
Data center	default		Uptime	1 day 19:44
			Lease expiration enabled	true
			Renews threshold	23
			Renews (last min)	28
DS Replicas				
Instances currently registered	d with Eureka			
Application	AMIs	Availat	oility Zones	Status
AGGREGATION	n/a (1)	(1)		UP (1) - 172.16.88.72:8085
APIGATEWAY	n/a (1)	(1)		UP (1) - 172.16.88.72:8787
COMPOSITE-UI-BACKEND	n/a (1)	(1)		UP (1) - 172.16.88.72:8988
EUREKASERVER	n/a (1)	(1)		UP (1) - 172.16.88.72:8761
EXPANDED	n/a (1)	(1)		UP (1) - 172.16.88.72:8086
GIS	n/a (1)	(1)		UP (1) - 172.16.88.72:8084
GISATRANSLATOR	n/a (1)	(<u>1</u>)		UP (1) - 172.16.88.72.8092
MDMATRANSLATOR	n/a (1)	(1)		UP (1) - 172.16.88.72:8091
MEASUREMENTS	n/a (1)	(1)		UP (1) - 172.16.88.72.8081
MEASUREMENTS-GRAPHQL	n/a (1)	(1)		UP (1) - 172.16.88.72.8087
PREDICTIONS	n/a (1)	(1)		UP (1) - 172.16.88.72:8082
ansferring data from api-gw.iape.iskrauraltel.ru	1.14	12		

Рис. 2.28. Веб-интерфейс Eureka

3.3.12. Веб-интерфейс репозитория СІМгеро

Чтобы проверить работу всех сервисов репозитория CIMrepo, используйте команды: #systemctl status NMM-IS.service

```
#systemctl status NMM-IS-SNAPSHOT.service
#systemctl status NMM-LS.service
#systemctl status NMM-LS-SNAPSHOT.service
#systemctl status NMM-ORS.service
#systemctl status NMM-ORS-SNAPSHOT.service
#systemctl status rbac.service
# service nginx status
  [root@cimrepo ~] # service nginx status
  Redirecting to /bin/systemctl status nginx.service
  • nginx.service - The nginx HTTP and reverse proxy server
     Loaded: loaded (/usr/lib/systemd/system/nginx.service; enabled; vendor preset: disabled)
     Active: active (running) since Tue 2018-04-17 14:58:41 UTC; 1 day 16h ago
    Process: 29201 ExecReload=/bin/kill -s HUP $MAINPID (code=exited, status=0/SUCCESS)
    Process: 26543 ExecStart=/usr/sbin/nginx (code=exited, status=0/SUCCESS)
    Process: 26541 ExecStartPre=/usr/sbin/nginx -t (code=exited, status=0/SUCCESS)
    Process: 26539 ExecStartPre=/usr/bin/rm -f /run/nginx.pid (code=exited, status=0/SUCCESS)
   Main PID: 26546 (nginx)
     CGroup: /system.slice/nginx.service
             26546 nginx: master process /usr/sbin/nginx
29205 nginx: worker process
  Apr 17 14:58:40 cimrepo systemd[1]: Starting The nginx HTTP and reverse proxy server...
  Apr 17 14:58:40 cimrepo nginx[26541]: nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
  Apr 17 14:58:40 cimrepo nginx[26541]: nginx: configuration file /etc/nginx/nginx.conf test is successful
  Apr 17 14:58:41 cimrepo systemd[1]: Failed to read PID from file /run/nginx.pid: Invalid argument
  Apr 17 14:58:41 cimrepo systemd[1]: Started The nginx HTTP and reverse proxy server.
  Apr 17 15:11:14 cimrepo systemd[1]: Reloaded The nginx HTTP and reverse proxy server.
```

Рис. 2.29. Ответ с данными о состоянии от сервиса nginx service

Веб-интерфейс репозитория CIMrepo доступен по адресу в формате: http://<IP_узла_CIM>:81 (например, http://cimrepo01.iape.iskrauraltel.ru:81).

Реквизиты доступа по умолчанию: admin@iskratel.com/iskratel

Рис. 2.30. Главная страница веб-интерфейса CIMrepo

Предупреждение! Узел СІМгеро использует два разных доменных имени в среде Орепstack: одно для внутренего интерфейса (cimrepo), а другое для плавающего интерфейса (cimrepo01). Чтобы получить доступ к веб-интерфейсу, используйте доменное имя для плавающего интерфейса.

3.3.13. Узлы в кластере Mariadb-Galera

Кластер Galera (MariaDB) инсталлируется на узлы Cassandra. Нужно проверить состояние сервисов и их принадлежность к кластеру.

Чтобы получить статус кластера Galera, используйте команду:

```
# service mariadb.service status
```

```
Nov 13 11:50:31 cassandra03.iape.iskrauraltel.ru mysqld[17758]: 2018-11-13 11:50:31 140122227652864 [Note] /usr/sbin/mysqld: ready for connections.
Nov 13 11:50:31 cassandra03.iape.iskrauraltel.ru mysqld[17758]: 2018-11-13 11:50:31 140122227652864 [Note] /usr/sbin/mysqld: ready for connections.
Nov 13 11:50:31 cassandra03.iape.iskrauraltel.ru mysqld[17758]: 2018-11-13 11:50:31 1401221615516672 [Note] WSREP: Member 0.0 (dbl) synced with group.
Nov 13 11:50:31 cassandra03.iape.iskrauraltel.ru mysqld[17758]: 2018-11-13 11:50:31 140121915516672 [Note] WSREP: Member 0.0 (dbl) synced with group.
Nov 13 11:50:31 cassandra03.iape.iskrauraltel.ru mysqld[17758]: 2018-11-13 11:50:31 14012222733888 [Note] WSREP: Shifting JOINED -> SYNCED (TO: 0)
Nov 13 11:50:31 cassandra03.iape.iskrauraltel.ru mysqld[17758]: 2018-11-13 11:50:31 14012222733888 [Note] WSREP: synchronized with group, ready fo...cctions
Nov 13 11:50:31 cassandra03.iape.iskrauraltel.ru mysqld[17758]: 2018-11-13 11:50:31 14012222733888 [Note] WSREP: wrep_notify_cmd is not defined, ...cation.
Nov 13 11:50:51 cassandra03.iape.iskrauraltel.ru mysqld[17758]: 2018-11-13 12:57:05 14012222733888 [EMCR] Slave SQL: Error 'Table 'request_status' alrea...
Nov 13 12:57:05 cassandra03.iape.iskrauraltel.ru mysqld[17758]: 2018-11-13 12:57:05 14012222733888 [Warning] WSREP: RR event 1 Query apply warning: 1, 12
Nov 13 12:57:05 cassandra03.iape.iskrauraltel.ru mysqld[17758]: 2018-11-13 12:57:05 14012222733888 [Warning] WSREP: RR event 1 Query apply warning: 1, 12
Nov 13 12:57:05 cassandra03.iape.iskrauraltel.ru mysqld[17758]: 2018-11-13 12:57:05 14012222733888 [Warning] WSREP: RR event 1 Query apply warning: 1, 12
Nov 13 12:57:05 cassandra03.iape.iskrauraltel.ru mysqld[17758]: 2018-11-13 12:57:05 14012222733888 [Warning] WSREP: RR event 1 Query apply warning: 1, 12
Nov 13 12:57:05 cassandra03.iape.iskrauraltel.ru mysqld[17758]: 2018-11-13 12:57:05 14012222733888 [Warning] WSREP: RR event 1 Query apply warning: 1, 12
Nov 13 12:57:05 cassandra03.iape.iskrauraltel.ru mysqld[17758]:
```

Рис. 2.31. Ответ с данными о статусе Mariadb

Чтобы получить подробные сведения о кластере, используйте команду: #mysql -uroot -p -e "show status like 'wsrep%'"

Рис. 2.32. Информация о размере кластера

Реквизиты доступа по умолчанию для MariaDB: root/iskratel

3.3.14. Интерфейс шлюза SDP

Чтобы проверить состояние сервисов SDP, используйте команду:

```
# service sdp-gateway.service status
```

```
# service sdpmonitoring.service status
```


Примечание. Перед запуском веб-интерфейса SDP пропишите в таблицах файервола на шлюзе SPD IP-адрес клиента, который используется для запуска веб-интерфейса.

Clients						
Filter						
SDP ID	Name	Valid	Encrypt Key	Hmac Key	Actions	
3	angular-admin-1	1	evIYpTfmu8seMfM3SIZfpwARAuV1dR57fM/a/xnp	XbxoL/Wnn3RyedPXYTR/Fi88mlykhKjhMHF36wuE	/ 1	
4	angular-admin-2	1	m05n8V2m1I5x4b9+gyp0xwARAgO614ePTK0nd850	Twy9ex2S1LceNLwe+up3mmsuXMb44+rOeiC77F3e	/ =	
5	angular-root	1	sWYmXFlyc/vhe3rhOD0jtwARAtXN1bGNb+MJsotc	96k477vN2QAQ/ZqhLfGrqgm8hs9sb7LzeJozbqIp	/ 1	
б	angular_client	1	3xC/4Hy+gIlii7r1X0tGQ4AARAoUWeSjtT+IBGl3r	kxodsoBDmZ0zNgZQ5pxvZFFvZA6rRfZTaczK/8TV	/ =	
7	angular_login	1	9jwHbYwnCas86HIRDIC7URACIUXFSFKEUy79ZXcq	jvzez3UgD/LalxTVecMTiOb4L47lzgvj4/4PUfKL	/ =	
8	elena12	1	5Dn4QKpkcd7dt4VtyPpQIxACybHT/5Segvc0LpIt	Gl23ow05DzD0Uesh2l1art/N2gXEw1cUU2mgV7J1	/ =	
9	filestest22	ī	R46gkjDJxvsrdJVltufKvQARAttI+sNcg+32AT13	wzL7wP2mJDVkTUlznSRCuqQb1G6c/5Cmy5mLaSb2	. / 1	
10	igor	1	p978FvVojBdRM6DCDqG/xQARAketkKyWyEs8HE5t	+7FLmkLEIM0V2Hk64s9rz3RqLjmaS1VZ+I93CLIK	/ =	
11	iskrauraltel	ĩ	qlMfPHK1brpGpaFygOKHERACmSiApDWkLW4V/8r4	YGhXYFjETfByo7Ammj+7v95Hdr1H4yE70Z5Cb0i7	/ =	
10	ianeva	1	7Pzhki InOIT INZsv11aSI SBAC6ai IcWfNEGH3A0si h	8pK0r100wr8AAbpSuASfnAVKMsGaTpM6PGYP778b		

Веб-интерфейс шлюза SDP доступен по адресу: https://sdp-gateway.iape.iskrauraltel.ru:8443

Рис. 2.33. Главная страница веб-интерфейса SDP

АО «Искра Технологии»

620066, г. Екатеринбург, ул. Комвузовская, 9а тел.: +7 343 210 69 51 факс: +7 343 341 52 40

эл. почта: <u>iut@iskratechno.ru</u> www.iskratechno.ru